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The model problem of the motion in a central force field of a pendulum whose suspension point slides along a circular directrix 
with centre at an attracting centre is considered. The steady motions and conditions for their stability are determined. The results 
are used to investigate the motions of an orbital crane. © 2001 Elsevier Science Ltd. All rights reserved, 

To displace loads in space, with the aim of forming large-scale orbital configurations [1], one can use 
devices similar to a ground-based crane, where the load, like a pendulum, is suspended on a tether, 
while the suspension point moves along a directrix attached to an artificial satellite. We will assume 
that the directrix has the form of a circle with centre at an attracting centre and that the artificial satellite 
has a fixed orientation in an orbital system of coordinates. In this formulation one can obtain the time- 
optimal control, similar to that obtained in [2]. To construct it one must carry out a preliminary 
investigation of the oscillations of a pendulum when the suspension point moves with constant velocity, 
This paper investigates these oscillations in an accurate formulation. 

The problem of the equilibria of a pendulum was considered previously in [3] in the case when the 
suspension point is fixed at the centre of mass of a satellite which moves in a circular orbit with a Kepler 
orbital angular velocity. The problem has been investigated in the satellite approximation [4] for an 
arbitrary arrangement of the suspension point in a satellite moving in a circular Kepler orbit (see also 
IS]), 

1. F O R M U L A T I O N  OF THE P R O B L E M  
AND THE E Q U A T I O N S  OF M O T I O N  

Suppose a point P moves uniformly in a circle of radius R around an attracting centre O. A point Q of 
mass m ,  moving in the plane of this circle, is suspended at a point P on a weightless inextensible rod 
of length l,. We will introduce a system of coordinates Oxy connected to the point P, which rotates 
uniformly with angular velocity 0" about the point O (here and henceforth the prime denotes a derivative 
with respect to time). In this system of coordinates the vectors O P  and P Q  have coordinates (0, R) and 
(l. sin q0, - l ,  cos q~) (Fig. 1). 

Suppose 

s=sintp, c=cos(p, rZ = R 2 +12. - 2 R 1 , c  

The components of the absolute velocity of the point Q along the x and y axes have the form 

V x = l, ctp" + l~s - ( R  - l ,c)O', Vy = l,s(p' - l~c + l, sO" 

The kinetic energy of the point mass Q, the force function and the Lagrange function have the 
form 

T=-~I m(Vx 2 + Vy2) = -2J m(t2,~p,2 +t,2 +/ ,20 ,  2 + R 20 ,2 )  + 

+m[/2q0'0 ' - R(l,c(O" + dl,  s +/ ,c0")m']  

(1.1) 
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Fig. 1 

U = - mp3 0 "2, L = T+ U = mR20"2L (1.2) 
r, 

3 
L=i (12(1)2 + i 2  + / 2  + l )+12(p- lc (p- i s - lc  + P'r 

Here p3 = JM/0 2 is the cube of the radius of the Kepler orbit, corresponding to the angular velocity 
0", the dot above a symbol denotes differentiation with respect to G and we have introduced the dimen- 
sionless quantities 

l, r. P.._r_* 
l = ~ ,  r = - ~ ,  p =  R 

When i = 0 the system allows of a Jacobi integral which, apart from an additive constant, has the 
form 

3 
H = l l 2 ~ 2 + W ,  W = t c  _p-  

2 r 

Here W is the augmented potential energy. The equations of motion in this case are completely 
integrable. 

To determine the reactions in the rod we will write Lagrange's equation corresponding to the 
variable l, 

3 
"l'-t¢ 2 - l -  2l(p+ c + ~3 ( l - c )  = Qt (1.3) 

whence, when I = const, we obtain the tension in the rod 

3 
N = l~ 2 + l + 2 1 ( p - c - ~ 3 ( l - c )  

When an inextensible tether is used instead of a rod, the condition that the tension should be positive 
N I> 0 must be satisfied. 

In the (q0, qb) plane the curve of zero reactions intersects the vertical axis q0 = 0 at the points 

the vertical axis q0 = re/2 at the points 
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<b: - t   77Zr+: J 
and the axis (p = rt at the points 

[ ~o=-l_+ l - l ( !  (1+/)2 

The latter two points merge if 

03 

(1+1) 2 
= 1 ( 1 . 4 )  

and disappear if 

p3 
~ < 1  (! +/)2 

When condition (1.4) is satisfied two branches of the curve have a common point on the vertical 
~0 = ft. The curve N = 0 intersects the horizontal axis (0 = 0 at points given by the equation 

( P'I (l-c) ! - - 7  = 0  

2. S T E A D Y  M O T I O N S  

Using Lagrange's theorem the equilibria of a pendulum with respect to the uniformly rotating system 
of coordinates can be obtained as the critical points of the changed potential energy 

dW=ls -1  = 0  (2.1) 
d~ 

These equations always allow of two solutions 

1) ~0= 0, 2) tp= n 

Positions of the pendulum along the descending and ascending verticals respectively, passing through 
the point P, correspond to these. 

When 1 - l < p < 1 + I two solutions with s ¢ 0 exist (solutions of the form 3). For these solutions 
the point Q is situated at some point of intersection of a circle with centre O and radius p and a circle 
with centre P and radius I. On these solutions N = 0. 

Note that the form of the equilibria depends considerably on the position of the load with respect 
to the circle of radius p (above or below). 

We will estimate the orders of the quantities occurring in this problem. From the expression for a 
cube of the radius p we have 

I, a = SMlp 

where V is the linear orbital velocity. By varying the ratio and eliminating the constant fM from it we 
have 

8p/p = -28VIV 

Here P = 6 x 106 m, V = 9 x 103 m/s and 8V = 0.1 m/s. Then fi 9 -_- 133 m. Hence, an increment 
in the linear velocity of 0.1 m/s gives a change in P by an amount comparable with the length of the 
pendulum. 
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3. T H E  S T A B I L I T Y  OF R E L A T I V E  E Q U I L I B R I A  

We will use Lagrange's theorem to investigate the stability of the relative equilibria. The second derivative 
of the changed potential has the form 

W" = ( 93 3 7_ l),c_ 
J 2 r  ~ 

In solutions 1, 2 and 3 this derivative has the values 

W('-- p3 _(1_/ )3  l >~ 0 for P ~> 1 - / ( a n d  l<  1) 
( l  - 1) 3 

,, P3 -(1 +/)3 1>_ 0 for 9_< 1+ 1 
W:~ = - (1 + / ) 3  ~ 

3 
-3P~ 12s2 < 0  for 1 - / < p <  1 +1 W3"= 2r 5 

The bifurcation diagram is shown in Fig. 2. The continuous lines correspond to stable solutions and 
the dashed lines correspond to unstable solutions. 

If  001± t is the Kepler angular velocity, corresponding to the angular Kepler orbit of radius 1 _+ l, then 
when l < 1 the stability conditions can be represented in the form 

1) ¢o~_ t - l < 0 ,  2) 00~+ t - l > 0  

Solutions of the form 3 are always unstable for 1 - l < 9 < 1 + l. 

4. D I A G R A M  OF T H E  M O T I O N S  OF A P E N D U L U M  
IN T H E  P H A S E  P L A N E  

The phase portrait of the system for different values of the parameters l and p is shown in Fig. 3. When 
9 = 1 we have a pattern which is qualitatively identical with that obtained previously in [6]. This and 
all the subsequent diagrams can be extended to the left and to the right by symmetrical reflection in 
the vertical straight lines q0 = 7rk (k = 0, + 1, ...). The first diagram is symmetrical about the axis 
tp = 7r/2. The points on the axis @ = 0 with coordinates q~ = 0 and qo = n correspond to stable relative 
equilibria, whereas the point q0 _-- n/2 corresponds to unstable relative equilibrium. The oval passing 
through this point corresponds to a zero value of the tension in the rod; inside the oval the rod is 
compressed (N < 0), i.e. these equilibria cannot be obtained using a tether. 

We will now consider the case when 9 = 1 _+ ~, 0 < ~ ~ 1. The pattern in this case becomes 
asymmetrical. The two stable equilibria remain in place, but the unstable equilibrium is shifted along 
the abscissa axis. The oval, while still passing through the saddle point and close to the point q~ = 7r/2 
on the abscissa axis, loses its symmetry (Fig. 3 with 9 = 1.001 and l = 0.002). If we now reduce the 
value of l, then for a certain value of l the regions N < 0, situated in the regions [0, ~] × ~ and [lr, 2~] 
× ~ become closed and occupy the interior of a "figure of eight" (Fig. 3 with 9 = 1.001 and l = 0.0015). 

/.-3 

I 
t 

I I 
(1 +/)-3 (! _/)-3 p-3 

Fig. 2 
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p = 1, l = 0 . 0 0 2  p = 1.001,  I = 0 . 0 0 2  p = 1.001,  l = 0 . 0 0 1 5  

-3 

p = i . 0 0 1 ,  1 = 0 . 0 0 1 2  p = 1.001,  I = 0 .001  p - 1.001,  I = 0 . 0 0 0 5  

0 x/2 ¢p x 0 r~/2 q~ rt 0 n/2 ~P 

p = 0 . 2 , 1 =  0 .9  

o 

-3 ~ 
0 7rd2 cp ~t 

p =  1 . 8 , 1 = 0 . 9  

' ~ .~_  __ 

0 7t/2 ~ 7t 

F i g .  3 

When 1 is reduced further, the "figure of eight" is converted into a symmetrical curve (with axis of 
symmetry cp = n), diffeomorphic to a circle, but still passing through the saddle point (Fig. 3 for 
p = 1.001 and l = 0.0012). Further, the stable relative equilibrium with ~0 = n becomes unstable, being 
on the boundary of the compression region of the rod (Fig. 3 with p = 1.001 and l = 0.001). Finally, 
when I is reduced further the unstable relative equilibrium turns out to be inside the region N < 0 (Fig. 
3 for 13 = 1.001 and l = 0.0005). Calculations show that for small values of l and E, corresponding to 
actual satellite systems, the patterns constructed for 9 = 1 + ~ and 1 - ~ with graphical accuracy, can 
be obtained from one another  by symmetrical reflection in the straight line ~0 = ~2.  If this is not the 
case, this symmetry disappears (Fig. 3 with 9 = 0.2 and 1.8 and l = 0.9). 

5. I N T E R P R E T A T I O N  OF T H E  R E S U L T S  

Suppose the centre of mass of the orbital station moves along a circular Kepler orbit (the dimensionless 
orbital angular velocity is equal to unity) and the orientation of the station is unchanged with respect 
to an orbital system of coordinates. Suppose a crane consisting of a circular directrix with centre at O 
of radius R is set up on an orbital station, and from the carriage P it is possible to slide along this directrix 
and from a lqad Q. This directrix can be regarded locally as rectilinear. The orbital angular velocity of 
the carriage 0 = 1 + k consists of the translational angular velocity, which is equal to unity, and the 
relative angular velocity k. 

This device enables the load to be displaced in the orbital plane, and when motion occurs with constant 
relative velocity the load can be situated either below or above the suspension point, both positions 
being stable. By virtue of the first condition of (3.1) the lower position is stable if 

~. < o~R_ l - 1 

This condition'imposes a limitation on the velocity of the carriage motion along the direction of orbital 
motion. 

By virtue of the second condition of (3.1) the upper position is stable if 

~.> COR+t-- 1 
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This  cond i t i on  imposes  a l imi ta t ion  on the veloci ty  of  the car r iage  m o t i o n  in a d i rec t ion  oppos i te  to 
the d i rec t ion  of  orb i ta l  mot ion.  
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